ECOLE POLYTECHNIQUE DE LOUVAIN
References
[1] Stuart Thomson. Observing phase transitions in a halide perovskite using temperature dependent photoluminescence spectroscopy. Livingston: Edinburgh Instruments, AN_P45, 2018.
[2] Aurélie Champagne. Vibrational properties of hybrid halide perovskite for solar cells applications. PhD thesis, UCL - Ecole polytechnique de Louvain, 2016.
[3] La-o-vorakiat Chan. Phonon mode transformation across the orthohombic–tetragonal phase transition in a lead iodide perovskite ch3nh3pbi3, 2015. Accessed February 13, 2023. https: //pubs.acs.org/doi/full/10.1021/acs.jpclett.5b02223?casa_token=jOS4IMbI-2QAAAAA% 3AEa7uPEQN3kVWAhL98AZsIe80Qo75BmKxXEareIAeI0o8AYSAvk7HbdrZC1lA4xcpnb66vJ4C57gUMf4.
[4] Yukihiko Kawamura, Hiroyuki Mashiyama, and Katsuhiko Hasebe. Structural study on cubictetragonal transition of ch 3 nh 3 pbi 3. Journal of the Physical Society of Japan, 71(7):1694–1697, 2002.
[5] Database of ionic radii. http://abulafia.mt.ic.ac.uk/shannon/. Accessed: 2023-03-19.
[6] Christopher Eames, Jarvist M Frost, Piers RF Barnes, Brian C O’regan, Aron Walsh, and M Saiful Islam. Ionic transport in hybrid lead iodide perovskite solar cells. Nature communications, 6(1):7497, 2015.
[7] P. Whitfield, N. Herron, W. Guise, Katharine Page, Y. Cheng, I. Milas, and Michael Crawford. Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide. Scientific Reports, 6:35685, 10 2016.
[8] Mark T Weller, Oliver J Weber, Paul F Henry, Antonietta M Di Pumpo, and Thomas C Hansen. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 k. Chemical communications, 51(20):4180–4183, 2015.
[9] Yoonseong Jung, Wonsik Lee, Seungbin Han, Beom-Soo Kim, Seung-Jun Yoo, and Hyejin Jang. Thermal transport properties of phonons in halide perovskites. Advanced Materials, page 2204872, 2022.
[10] Materials Project h6pbci3n, mp-995214. https://materialsproject.org/materials/ mp-995214?formula=CH3NH3PbI3. Accessed: 2023-02-13.
[11] Yixin Ren, Iain WH Oswald, Xiaoping Wang, Gregory T McCandless, and Julia Y Chan. Orientation of organic cations in hybrid inorganic–organic perovskite ch3nh3pbi3 from subatomic resolution single crystal neutron diffraction structural studies. Crystal Growth & Design, 16(5):2945– 2951, 2016.
[12] Mazumdar Sayantan, Zhao Ying, and Zhang Xiaodan. Stability of perovskite solar cells: Degradation mechanisms and remedies. 2, 2021.
[13] Daniel Bryant, Nicholas Aristidou, Sebastian Pont, Irene Sanchez-Molina, Thana Chotchunangatchaval, Scot Wheeler, James R Durrant, and Saif A Haque. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy & Environmental Science, 9(5):1655–1660, 2016.
[14] C. López, C.A.and Abia and J.E. Rodrigues. Enhanced stability in ch3nh3pbi3 hybrid perovskite from mechano-chemical synthesis: structural, microstructural and optoelectronic characterization. Sci Rep, 10(11228), 2020.
[15] RD Project Leader Dr. Anurag Krishna. Next-generation photovoltaic technology, energyville 2, genk, 2023. Accessed: 17-03-2023.
[16] Yue Hu, Yanmeng Chu, Qifei Wang, Zhihui Zhang, Yue Ming, Anyi Mei, Yaoguang Rong, and Hongwei Han. Standardizing perovskite solar modules beyond cells. Joule, 3(9):2076–2085, 2019.
[17] Aurélien MA Leguy, Pooya Azarhoosh, M Isabel Alonso, Mariano Campoy-Quiles, Oliver J Weber, Jizhong Yao, Daniel Bryant, Mark T Weller, Jenny Nelson, Aron Walsh, et al. Experimental and theoretical optical properties of methylammonium lead halide perovskites. Nanoscale, 8(12):6317– 6327, 2016.
[18] Kittiphong Amnuyswat and Pitiporn Thanomngam. Improvement of energy gap prediction for hybrid perovskite materials by first-principle calculation. In AIP Conference Proceedings, volume 2010, page 020009. AIP Publishing LLC, 2018.
[19] Yasuhiro Yamada, Toru Nakamura, Masaru Endo, Atsushi Wakamiya, and Yoshihiko Kanemitsu. Near-band-edge optical responses of solution-processed organic–inorganic hybrid perovskite ch3nh3pbi3 on mesoporous tio2 electrodes. Applied Physics Express, 7(3):032302, 2014.
[20] Samuel A March, Charlotte Clegg, Drew B Riley, Daniel Webber, Ian G Hill, and Kimberley C Hall. Simultaneous observation of free and defect-bound excitons in ch3nh3pbi3 using four-wave mixing spectroscopy. Scientific Reports, 6(1):39139, 2016.
[21]
[22] Keith T Butler, Jarvist M Frost, and Aron Walsh. Band alignment of the hybrid halide perovskites ch 3 nh 3 pbcl 3, ch 3 nh 3 pbbr 3 and ch 3 nh 3 pbi 3. Materials Horizons, 2(2):228–231, 2015.
[23] Xie Ziang, Liu Shifeng, Qin Laixiang, Pang Shuping, Wang Wei, Yan Yu, Yao Li, Chen Zhijian, Wang Shufeng, Du Honglin, et al. Refractive index and extinction coefficient of ch 3 nh 3 pbi 3 studied by spectroscopic ellipsometry. Optical Materials Express, 5(1):29–43, 2015.
[24] Khuong P Ong, Shunnian Wu, Tien Hoa Nguyen, David J Singh, Zhen Fan, Michael B Sullivan, and Cuong Dang. Multi band gap electronic structure in ch3nh3pbi3. Scientific Reports, 9(1):2144, 2019.
[25] Towfiq Ahmed, T Salim, YM Lam, Elbert EM Chia, Jian-Xin Zhu, et al. Optical properties of organometallic perovskite: An ab initio study using relativistic gw correction and bethe-salpeter equation. Europhysics Letters, 108(6):67015, 2015.
[26] Xi Zhu, Haibin Su, Rudolph A Marcus, and Maria E Michel-Beyerle. Computed and experimental absorption spectra of the perovskite ch3nh3pbi3. The journal of physical chemistry letters, 5(17):3061–3065, 2014.
[27] Warwick departement of phyics - phonons. https://warwick.ac.uk/fac/sci/physics/current/ postgraduate/regs/mpagswarwick/ex5/phonons/. Accessed: 2023-03-19.
[28] Quasiparticle definition (britannica). https://www.britannica.com/science/quasiparticle. Accessed: 2023-03-19.
[29] Phonon dispersion for a linear diatomic chain. https://upload.wikimedia.org/wikipedia/ commons/0/04/Diatomic_phonons.png. Accessed: 2023-03-19.
[30] Hao Ma, Yunwei Ma, Heng Wang, Carla Slebodnick, Ahmet Alatas, Jeffrey J Urban, and Zhiting Tian. Experimental phonon dispersion and lifetimes of tetragonal ch3nh3pbi3 perovskite crystals. The journal of physical chemistry letters, 10(1):1–6, 2018.
[31] Anton Kovalsky, Lili Wang, Gage T Marek, Clemens Burda, and Jeffrey S Dyck. Thermal conductivity of ch3nh3pbi3 and cspbi3: Measuring the effect of the methylammonium ion on phonon scattering. The Journal of Physical Chemistry C, 121(6):3228–3233, 2017.
[32] Xavier Mettan, Riccardo Pisoni, Péter Matus, Andrea Pisoni, Jacim Jacimovic, Bálint Náfrádi, Massimo Spina, Davor Pavuna, László Forró, and Endre Horváth. Tuning of the thermoelectric figure of merit of ch3nh3mi3 (m pb, sn) photovoltaic perovskites. The Journal of Physical Chemistry C, 119(21):11506–11510, 2015.
[33] Materials Project cubic si, mp-149. https://materialsproject.org/materials/mp-149? chemsys=Si. Accessed: 2023-02-13.
[34] Wikipedia. Silicon. Accessed February 20, 2023. https://en.wikipedia.org/wiki/Silicon#: ~:text=a%20triode%20amplifier.-,Crystal%20structure,bonds%20and%20melt%20the% 20solid.
[35] CC Yang, JC Li, and Q Jiang. Temperature–pressure phase diagram of silicon determined by clapeyron equation. Solid state communications, 129(7):437–441, 2004.
[36] Fox Mark. Optical Properties of Solids. Oxford University Press, 2001.
[37] Wikipedia. Direct and indirect band gaps. Accessed February 18, 2023. https://en.wikipedia. org/wiki/Direct_and_indirect_band_gaps. [38] Wikipedia. Refractive index. Accessed February 20, 2023. https://fr.wikipedia.org/wiki/ Indice_de_r%C3%A9fraction.
[39] Shockley William and J. Queisser Hans. Detailed balance limit of efficiency of p-n junction solar cells. Energy Environmental Science, 32(510), 1961.
[40] Inzicht in spectra van de aarde. Accessed May 6th, 2023. https://seos-project.eu/ earthspectra/earthspectra-c02-p12.nl.html.
[41] Glossary of meteorology. Accessed May 6th, 2023. https://glossary.ametsoc.org/wiki/ Atmospheric_attenuation.
[42] National Renewable Energy Laboratory. 2000 astm standard extraterrestrial spectrum reference e-490-00. Accessed February 28, 2023. https://www.nrel.gov/grid/solar-resource/ spectra-astm-e490.html.
[43] Steve Byrnes. Solar cell efficiency limit. Accessed February 28, 2023. https://github.com/ sbyrnes321/SolarCellEfficiencyLimits/blob/master/sq.ipynb.
[44] Samuel Poncé, Wenbin Li, Sven Reichardt, and Feliciano Giustino. First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials. Reports on Progress in Physics, 83(3):036501, feb 2020.
[45] Melike Karakus, Søren A. Jensen, Francesco D’Angelo, Dmitry Turchinovich, Mischa Bonn, and Enrique Cánovas. Phonon–electron scattering limits free charge mobility in methylammonium lead iodide perovskites. The Journal of Physical Chemistry Letters, 6(24):4991–4996, 2015. PMID: 26619006.
[46] Atsuhiko Miyata, Anatolie Mitioglu, Paulina Plochocka, Oliver Portugall, Jacob Tse-Wei Wang, Samuel D. Stranks, Henry J. Snaith, and Robin J. Nicholas. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nature Physics, 11(7):582–587, Jul 2015.
[47] Arash A. Mostofi, Jonathan R. Yates, Young-Su Lee, Ivo Souza, David Vanderbilt, and Nicola Marzari. wannier90: A tool for obtaining maximally-localised wannier functions. Computer Physics Communications, 178(9):685–699, may 2008.
[48] Shivam Singh, Cheng Li, Fabian Panzer, K. Narasimhan, Anna Graeser, Tanaji Gujar, Anna Köhler, Mukundan Thelakkat, Sven Huettner, and Dinesh Kabra. Effect of thermal and structural disorder on the electronic structure of hybrid perovskite semiconductor ch 3 nh 3 pbi 3. The Journal of Physical Chemistry Letters, 7, 07 2016.
[49] Mi Zhong, Wei Zeng, Hua Tang, Long-Xiang Wang, Fu-Sheng Liu, Bin Tang, and Qi-Jun Liu. Band structures, effective masses and exciton binding energies of perovskite polymorphs of ch3nh3pbi3. Solar Energy, 190:617–621, 2019.
[50] Structure of relaxed si. https://www.iue.tuwien.ac.at/phd/dhar/node18.html. Accessed: 2023-05-12.
[51] Effective mass of electrons silicon. https://docs.quantumatk.com/tutorials/effective_mass/ effective_mass.html. Accessed: 2023-05-12.
[52] Leopold Talirz, Snehal Kumbhar, Elsa Passaro, and al. Materials cloud, a platform for open computational science. sep 2020.
[53] Rebecca L. Milot, Giles E. Eperon, Henry J. Snaith, Michael B. Johnston, and Laura M. Herz. Temperature-dependent charge-carrier dynamics in ch3nh3pbi3 perovskite thin films. Advanced Functional Materials, 25(39):6218–6227, 2015.
[54] Chelsea Q. Xia, Jiali Peng, Samuel Poncé, Jay B. Patel, Adam D. Wright, Timothy W. Crothers, Mathias Uller Rothmann, Juliane Borchert, Rebecca L. Milot, Hans Kraus, Qianqian Lin, Feliciano Giustino, Laura M. Herz, and Michael B. Johnston. Limits to electrical mobility in lead-halide perovskite semiconductors. The Journal of Physical Chemistry Letters, 12(14):3607–3617, 2021. PMID: 33822630.
[55] Fabian Paulus, Colin Tyznik, Oana Jurchescu, and Yana Vaynzof. Switched-on: Progress, challenges, and opportunities in metal halide perovskite transistors. Advanced Functional Materials, 31, 07 2021.
[56] Marijan Herceg, Tomislav Matić, and Tomislav Švedek. Comparison of current-voltage characteristics for hypothetic si and sic bipolar junction transistor. Elektrotehniski Vestnik/Electrotechnical Review, 75, 01 2008.
[57] G. Dresselhaus, A. F. Kip, and C. Kittel. Cyclotron resonance of electrons and holes in silicon and germanium crystals. Phys. Rev., 98:368–384, Apr 1955.
[58] Peter Y. Yu and Manuel Cardona. Fundamentals of semiconductors: physics and materials properties. Springer, 2nd updated ed edition. OCLC: 676858505.
[59] CI Cabrera, DA Contreras-Solorio, and L Hernández. Joint density of states in low dimensional semiconductors. Physica E: Low-dimensional Systems and Nanostructures, 76:103–108, 2016.
[60] Martin A Green and Mark J Keevers. Optical properties of intrinsic silicon at 300 k. Progress in Photovoltaics: Research and applications, 3(3):189–192, 1995.
[61] Giulia Longo, Suhas Mahesh, Leonardo RV Buizza, Adam D Wright, Alexandra J Ramadan, Mojtaba Abdi-Jalebi, Pabitra K Nayak, Laura M Herz, and Henry J Snaith. Understanding the performance-limiting factors of cs2agbibr6 double-perovskite solar cells. ACS Energy Letters, 5(7):2200–2207, 2020.
[62] Samuel Poncé, Martin Schlipf, and Feliciano Giustino. Origin of low carrier mobilities in halide perovskites. ACS Energy Letters, 4(2):456–463, 2019.
[63] Chenming Hu. Modern semiconductor devices for integrated circuits, volume 2. Prentice Hall Upper Saddle River, NJ, 2010.
[64] Youwei Wang, Yubo Zhang, Peihong Zhang, and Wenqing Zhang. High intrinsic carrier mobility and photon absorption in the perovskite ch 3 nh 3 pbi 3. Physical Chemistry Chemical Physics, 17(17):11516–11520, 2015.
[65] Lucio Claudio Andreani, Angelo Bozzola, Piotr Kowalczewski, Marco Liscidini, and Lisa Redorici. Silicon solar cells: toward the efficiency limits. Advances in Physics: X, 4(1):1548305, 2019.
[66] Silicon solar cell parameters. Accessed May 8th, 2023. https://www.pveducation.org/pvcdrom/ design-of-silicon-cells/silicon-solar-cell-parameters.
[67] What is the average electricity consumption in belgium? Accessed March 15th, 2023. https: //callmepower.be/fr/energie/guides/consommation/moyenne-electricite.
[68] How long do solar panels last? Accessed March 15th, 2023. https://www.forbes.com/ home-improvement/solar/how-long-do-solar-panels-last/#:~:text=The%20industry% 20standard%20for%20most,to%2010%20years%20after%20installation.
[69] Fan-Wei Liu, Gill Biesold, Meng Zhang, Rachel Lawless, Juan-Pablo Correa-Baena, Yu-Lun Chueh, and Zhiqun Lin. Recycling and recovery of perovskite solar cells. Materials Today, 43:185–197, 2021.
[70] Jian Gong, Seth B. Darling, and Fengqi You. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environmental Science, 8(7):1953–1968, 2015.
[71] Xueyu Tian, Samuel D. Stranks, and Fengqi You. Life cycle assessment of recycling strategies for perovskite photovoltaic modules. Nature Sustainability, 4(9):821–829, 2021.
[72] Yan Xu, Jinhui Li, Quanyin Tan, Anesia Lauren Peters, and Congren Yang. Global status of recycling waste solar panels: A review. Waste Management, 75:450–458, 2018.
[73] Daiyu Li, Deyi Zhang, Kwang-Soo Lim, Yue Hu, Yaoguang Rong, Anyi Mei, Nam-Gyu Park, and Hongwei Han. A review on scaling up perovskite solar cells. Advanced Functional Materials, 31(12):2008621, 2021.
[74] Analysis and modelling of the energy consumption of chemical batch plants. Accessed April 5th, 2023. https://www.osti.gov/etdeweb/servlets/purl/20548412.
[75] Biolab. Accessed April 8th, 2023. https://www.ddbiolab.com/product-group/ 0O-agitateurs-agitateurs_magnetiques?language=en.
[76] Labs nova. Accessed April 8th, 2023. https://www.labrotovap.com/portfolio-item/ small-industrial-vacuum-drying-oven-machine/?portfolioCats=619.
[77] Process data set: Potassium iodide (approximation). Accessed April 8th, 2023. https://sphera. com/2022/xml-data/processes/2dc7f668-eb08-426d-ad2d-bacbe4d7fe15.xml.
[78] Aluminium and health effects - cancer environment. Accessed May 10th, 2023. https://www. cancer-environnement.fr/fiches/expositions-environnementales/aluminium/#:~:text= En%201987%2C%20le%20Centre%20International,les%20travailleurs%20de%20l’aluminium.
[79] Mahat M., Omar Nagia, and Wood A.K.H. Water quality studies in an aquatic environment of disused tin-mining pools and in drinking water. ecological Engineering, 16:405–414, 2001.
[80] Where is radon found? Accessed May 9th, 2023. https://www.atsdr.cdc.gov/csem/radon/ where_found.html#:~:text=The%20main%20source%20of%20indoor%20radon%20is%20radon% 20gas%20infiltration,of%20radon%20in%20the%20home.
[81] Chrome vi and his componounds. Accessed May 10th, 2023. https: //www.cancer-environnement.fr/fiches/expositions-environnementales/ chrome-6-et-ses-composes/